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R is required to positio~l a Lagrang~ system whose free and controllable degrees of freedom are elastically linked. The equations 
of motion of such systems describe, in particular, the dynamics of a robot manipulator with elastic joints. The proposed control 
laws enable restrictions ,an the value of the control impulse to be taken into account. In particular, attention is given to the situation 
in which the velocities are not access~le to measurement. The analysis of  the proposed control laws is based on Lyapunov's 
direct method or, more: specifically, on the Baxbashin-Krasovskii theorem on asymptotic stability in the large. The proof uses 
an original method to verify that an auxiliary non-linear function, analogous to the total mechanical energy of a system, closed 
by a control law, is positive-definite. @ 1997 Elsevier Science Ltd. All fights reserved. 

l .  S T A T E M E N T  O F  T H E  P R O B L E M  

C o n s i d e r  a L a g r a n g i a n  dynamica l  sys tem with  L a g r a n g i a n  

L = 1 (qtrD(q ! )ql + il~Jq2 + (q! - q2 )r  K(ql  _ q2))  + U(q! ) 

where ql and q2 are n-dimensional vectors--two groups of generalized coordinates of the system, D ( q l )  
is a positive-definite n x n matrix and J and K are constant diagonal matrices with positive diagonal 
elements. In addition, corresponding to the generalized coordinates qe we have a vector u of control 
forces. Such a system, in particular, simulates the dynamics of an n-link electromechanical manipulator, 
taking the elasticity of  the hinges into account. In that case ql is the vector of the angles between the 
links of the robot, qe is the vector of the angles of  rotation of the external parts of the electric drive 
shafts relative to the corresponding supporting links, D is the kinetic energy matrix of the manipulator, 
J is the kinetic energy matrix of the drive, K is the stiffness matrix of the external parts of the drive 
shafts, U(ql) is the l~tential energy of the manipulator in the gravity field, and u is the vector of control 
torques applied to the electric drive rotors. 

The system may be written as two vector differential equations [1, 2] 

D(  ql )/~! + C( q I , t~! )t~l + K ( q! - q2 ) + g( ql ) = 0 (1.1) 

J/12+ K(q2 - q! ) = u (1.2) 

The vectorf(ql) is defined by the torques of the gravity forces and C(ql, ill)(Zl is the vector of centrifugal 
and Coriolis forces. Note that, as is well known (see, for example, [3]) 

q~" [ b ( q t  ) -  2C(ql  ,ql )]qt = 0 (1.3) 

Let qla denote Rle desired (programmed~ position of the links. 
Given an arbitraIy vector x = [Xl,. . .  ,x~]" ~ R ~, one can define the norm [[x [] = max/[ x i ], and then 

the corresponding norm of the matrix B = [bo]/,j ffi 1,2, . . . .  n will be liB II = maxi ~ [ b#] and IIKll ffi 
• k n II &ag{  i}i=1ll = m ~ l  ki J = max ik i .  
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The following well-lmown properties hold: II ~ It ~< II Bx II II x II; if B -1 e ~ t s ,  then II Bx II ~> II B-1 IP II x II; 
II S~ + B2tl ~< II e l  II + II Be II, II~B~2 II ~< II B1 II II B2 II, II x~ + x2 II ~< II x~ II + II x2 II for any Xx, x2 ~ Rn; Bx, 
B2 c R  nxn. 

Below we w ~  also use the notation ~ax(B) and 2qm(B) for the maximum and minimum eigenvalues 
-of a,vqatrixB~ R nx~. Then 

IIKII= Xmax(K)= maxki; IlK-Ill -I = Xmin(K ) =mink/ 

Let  us assume that a > 0 and A > 0 exist such that 

IIg(x)-g(y)ll<~ ¢dlx-yl l ,  Vx, y ¢ R" (1.4) 

or 

II~g(qt)l~qlll<~ o~. Vqz E R"; IIg(ql)ll~< A, Vql ~ R" (1.5) 

This assumption has been observed to be true for manipulators with rotational degrees of mobility. 
A control law u will be constructed according to the accessible measurement of information. In Section 

2 we will assume that both the positions q2 and their velocities q2 are measurable. In Section 3 we will 
consider a control law based on measurement of the angular positions q2 alone. 

The need for this formulation stems from the fact that it is sometimes very expensive to mount tachometers 
on a mechanical system. Moreover, as is well known, velocity sensors usually produce less reliable, i.e. more 
"noisy", information. It is interesting that one can prove asymptotic stability in the large for a system (1.1), (1.2) 
closed by a control based on angle measurements only, despite the fact that this system makes no allowance for 
natural friction. 

Iris important that the proposed.control laws involve functions satisfying conditions that enable one to make 
th~ control bounded by a prescribed,known quantity.For the practical use of the proposed control laws, it is essential 
to make allowance for the fact that no amplifier-motor used to control the system can develop a torque exceeding 
some fixed value (owing to saturation in the output response of the power converter). 

,In many publications (e.g. [1, 3-5]) bounds on the control are ignored. Bounds have been imposed on only part 
of the.control [6]. A fully bounded control has been assumed, for the case of a Lagrangian system without elastic 
elements [7]; such a mathematical model admits of full compensation for the gravity force (as indeed was done in 
[7]), but it:is less general than the model (1.1), (1.2) used below (which was proposed in [1, 2]). In a rigid model 
it is impossible to take into account the elastic vibrations arising in the system, which hinder the exact determination 
of the coordinates ql. 

Before presenting the main results and a¢tualization of the control laws, we must determine the 
conditions to be satisfied by the functions F(x) = [Fl(Xl), • • • ,  Fn(Xn)] r used in these laws: Fi(xi) are 
continuous, strictly increasing fimctions, vanishing for a zero, value of the argument such that positive 
constants 1~1, 1~ and T2 exist with the following, properties 

IIF(x)ll~ 7111x11, if Ilxll~< [~j (1.6) 

II~F(x)/Oxll~ Y2, i f  Ilxll~ 1~2 (1.7) 

IIF(x)ll~ [~jTj, if Ilxll~ 131 (1.8) 

We will also assume for simplicity that 

F(x) = -F(-x)  (1.9) 

Suppose that, in addition 1~1 = ~ = 13 > 0; Fi(xi) may be chosen either as non-bounded functions, 
such as 

Fi(xi) = ~i,  Y1 = Y2 = Y, 131 and 132 are arbitrary numbers (1.10) 

or 
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[ YX i , IXil<~ 

F,-(~i)=~#+~(x~-[3), xi >[3 

[ -~  + E(x~ + [3), x~ < - [ 3  

(1.11) 

[31 =[32 =~, Tl =~2 =~' E>0 

or as bounded ones, such as 

F/(xi) = 13y ,~ arctg x (1.12) 
arctg p 

[31 = [32 = [3, ¥1 = T, "/2 = 
~v 

(1 + [32)arctg[3 

The first example (1.10) is the ideal response curve of an amplifier, while the others (( 1.11 ) and (1.12)) 
are less idealized models. The most interesting example is (1.12), since in that case 

IF/(xl)I~< [33' X=const" 
arctg [3 2 

We can now proceed to define the control laws and analyse them in the stability-theoretic sense. 

2. A S Y M P T O T I C  S T A B I L I Z A T I O N  OF A S Y S T E M  W I T H  G E N E R A L I Z E D  
V E L O C I T I E S  q2 A C C E S S I B L E  TO M E A S U R E M E N T  

We propose the following control law 

u = F(-(q2 --q2d)-- Kt, cl2)+gd (gd = g(qld))  (2.1) 

where F(x)  is the vector function defined at the end of  Section 1, satisfying conditions (1.6)-(1.9) with 
certain positive constants 3'1, ~2 and [3, the choice of which will be explained below and, in physical terms, 
will mean that the control torques prevail over the torques due to gravity,/~ is some positive-definite 
diagonal matrix and q2a is a vector defining the fixed desired position of  the coordinatesq2, which is 
calculated from the desired position of the coordinates ql as follows: 

q2d = qld + K-I gd (2.2) 

Thus, of  the whole dynamical model, the known elements are the stiffnesses and a vector defining 
the torques of  the gravity forces in the desired position. Only 2n of  the 4n phase coordinates of  system 
(1.1), (1.2) are ashamed to be accessible to measurement. 

We introduce the following notation 

ql2 = -q21 -- ql - q2, ql2d = --q21d = qld -- q2d 

X = q l - - q l d ,  Y = q 2 - - q 2 d  

Ag(X) = g(x  + qld ) -- gd 

(2.3) 

Proposition 2.1. If the coefficients [31 and 3'1 in (1.6) and (1.8) are chosen so that (1.4) and (1.5) are 
satisfied, and in addition 

)'l > ¢t(1 - txll K -n II) -t > 0, Tn[3L > A+llgdll (2.4) 

then the closed sysl~em (1.1), (1.2), (2.1) has a unique equilibrium position, which is precisely the desired 
position: ql = qu,  q2 ffi q2a of (2.2). 

Proof. An equilibrium position is defined by the system 
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g(q l )  = Kq2|, Kq21 = F( - y )+  gd (2.5) 

In view of (2.2), system (2.5) may be rewritten as 

Ag(x)= K(y-x), K(y-x)= F(-y) (2.6) 

Equations (2.5) are satisfied if and only if 

y = X, Ag(x)= F(-X) (X = x+g-IAg(x)) (2.7) 

The second relationship in (2.7) is valid for some x only if 

HAg( x)II=IIF(- X)II (2.8) 

If IIXII ~< I~x, then, by (1.6) and (1.4) 

IIF(-X) I1~> TI IIXII~> ~1 ( Ilxll-II K-I II IIAg(x)ll) I> "/I (1 -¢tllK -111)llxll 

On the other hand, by (1.4), II ~,(x) II <- o~1 x II. Then Eq. (2.8) will hold only if c~l x 11 ~ ~(1  - e II K q II) 
II x U, but in view of the first inequality in (2.4) this is poss~le only if II x II ffi 0. 

If II x II ~ 111, then, by (1.8), II F( -J0  II ~> lira, and it follows from (1.5) that II as(x) II ~ II gd II + ,4. Then, for 
condition (2.8) to hold, necessarily [[gd I[ + A ~> [Ix¥1---but this is impossible because of the second relationship in 
(2.4). 

Thus, condition (2.7) will hold only if IIx U = 0, that is, x = 0. It then follows from the first equality in (2.7) that 
y = 0. This means that Eqs (2.6) will hold only ifx = 0,y = 0. 

Note  that the torques of the gravity forces may be expressed in terms of the potemial energy U(ql) 
by the formula 

By definition 

Consider the function 

g(ql ) = [gl (qt) ...... gn (ql)]r = OU I Oql = [OU I Oqll ..... OUql,, ]r 

i YT(n)dn= F,<n,)dn, 
0 i=1 0 

i r i T P(ql,q2)='~ql2Kql2-'~ql2dKql2d+U(ql)-Ud+(q2d-q2)T gd+q2dfq2FT(Tl)dl] (2.9) 
0 

where we have introduced the notation Ua = U(qld). 
Apart from the last term, which is introduced by analog3, with previously chosen terms [7], P(ql, q2) 

consists of  the potentials of  the forces acting in the closed system (1.1), (1.2), (2.1). Taking (2.2) and 
(2.9) into account, we can reduce (2.2) and (2.9) to the form 

2 - '  
P= (x--y)r K(x--y)+U(x+qd)--Ud+Xrgd+ f Fr(rOd'q 

0 

If F(~) is chosen to be the vector of functions (1.10), the reduced function P is the same as that 
considered in [4]. 

Proposition 2.2. If inequalities (2.4) hold, the function P(ql, q2) has the following properties 
1. P(ql, q2) has a unique stationary point S: qx = qld, q2 = q2d. 
2. If 

La~n(K)>&x a n d  y 2 > ~  8- -~ ,ma  x = (2.10) 

where ct is from (1.4) and T2 from (1.7), then P(ql, q2) is convex in the ~-neighbourhood of S, so that 
S is a local minimum point. 
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3. P(ql,  q2) --> + .o  as It [qT1, lr2l r II -'* +oo. 
4. P(qx, q2) > P(qld, q2d) = 0 for  any (qlq2) ~ (qld, q2a), that  is, S is a global min imum point.  

Proof. 1. The stationarity condition aP/~ql = 0, aP]~/2 = 0 leads directly to system (2.5), and one can use the 
result of Proposition 2 . 1 .  

2. We have to consider the neighbourhood IIx n ~< [12, IIY II ~. In this neighbourhood the matrix of second derivatives 
of P(ql, q2) has a lower bound in the sense of quadratic forms 

O2p(ql,q2) _l[K+OglOql - K  I1 
( a [ q r , q r ] r )  2 ~ ~ - K  r + V 2 e  II 

Now apply the proposition of [5]. 
3. Make the non-slingular change of variables ~ = x -y ,  1] = x + y and use (2.3). Then 

1 T (~ -TI ) I2  / -  + " 
P = - ~  K~+ ! F T ( ~ ) d ~ + U l - ~ + q l d ) - U d - ( - ~ - ~ - I T g  d 

The direction [a T, br] T in (~, 11) spaces may be chosen so that 

Ilall= [3, I[blk < 13 or Ilall~ [3, IIbll= [3 (2.11) 

When all such values of a and b are substituted, the end of the vector [a T, bT] ~ describes the boundary of the 
domain considered in property 2. 

Let us consider the behaviour of the function e on the ray [~T, TIT]T = t[a T, bT]T for t e [1, oo). We obtain 

dP T a - b  r a - b  a+b r a+b 

If a > 0 it follows from (1.8), (1.9) and (1.5) that dP/dt ~- t(arKa) as t -* oo, that is, P increases at a rate 
proportional to t, beginning from some value of t which increases at n a [I approaches zero. If II a [[ = 0, then 
lib II = [~ by (2.11), and so (using (1.9)) 

dP br( br 
F - b t ) +  A g ( b t ] > ~  . . . .  (Yll3-[A+llg#ll]) = eonst > 0 

dt 2 z I 2 kz } z 

Thus, P increases at least at a constant rate proportional to (Yd~ - [A + n ga lID along any direction in (~, 13) 
space, hence also in 0:, Y) space, beginning from some fixed time t*. This completes the proof of property 3. 

T TT T T T * *  4. Consider the neighbourhood of the origin in (~, 11) space bounded by the surface [~ , T I ] = [a , b ] t , 
where a and b run through all possible values in (2.11) and t** > t*, t* being the same is in the proof of 3. The 
function P(qx, q2) is continuous, as is clear from (2.9); consequently, P takes its minimum value in this compact 
neighbourhood of the origin either at the local minimum point [xr, y h  r = [0 r, Or] T, where P = 0, or on the surface. 
The possibility that p might take a negative value at some point on the boundary of the neighbourhood is refuted 
with the help of property 3, which implies that a finite increase in t** may increase the value of P o n  the surface 
(which itself is modified by this increase) by any finite number in the positive sense. This completes the proof of 
property 4. 

Theorem 2.1. If  condit ions (1.4)-(1.9),  (2.4), (2.10) are satisfied, the d o s e d  system (1.1), (1.2), 
(2.1) has a unique  equil ibrium position, which coincides with the desired position: ql = qld, q2 = q~,  
where  q ~  is as def ined in (2.2); moreover ,  the equil ibrium posit ion is asymptotically stable in the 
large. 

Proof.  Cons ider  the following auxiliary funct ion 

V ( qi , q2, il= , i12 ) = ~ ( il~ D( ql )t~l "~" q ~ J q 2  ) -I- P( ql , q2 ) 

bear ing (2.9) in ndnd.  
By Proposi t ion 2.2, this is a Lyapunov function for the closed system. It is the sum of  the kinetic energy 

and an analog o f  the potent ia l  energy of  the system. 
The  ra te  o f  change o f  V(ql, q2, ql,  q2) along a t rajectory o f  the closed system is 

V ( q, , q2 , ih . it2 ) = ~ cff D( q, )ii, + if f  D( q, )ell + il~ J~i2 + q~  Kch 2 + 
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+~fig(q, ) - q~gd + Fr (--Y)(--q2) = ~ Cl~ L)(q, )Oh +cff [ -C(q, ,  el, )tll l + 

+¢~ [-g(ql ) + Kq2! ]+ q2 T [ -  Kq2, + F ( -  y - K v ~12 ) + gd ] + qT Kql2 + ilT g( qt ) _ 

- q ~ g d - q f F ( - y ) = - q ~ [ F ( y + K w o 2 ) - F ( y ) l  

The cancellations follow from (1.3) and (1.9). 
By the fact that Fi(yi) is strictly increasing, we have II~< 0, with I /= 0 only if q2 = 0, i.e. q2 = q2c = 

const. It then follows from (2.1) that u = uc = const and from (1.2) that ql = qlc = const. Then, by 
Proposition 2.1, ql = qla, q2 = q2a, and the set l)'= 0 does not contain other complete trajectories. To 
complete the proof of the theorem, we need only apply the Barbashin-Krasovskii theorem on asymptotic 
stability in the large. 

Corollary 2.1. If there are no gravity forces in the system, Eqs (1.1), (1.2), (2.1) are asymptotically 
stable in the large for all positive-definite diagonal matrices Kv and all strictly increasing, continuous 
functions F(x) that vanish for zero values of the argument. 

The class of equations considered up to this point has a drawback, namely the requirement thatFi(yi) 
be strictly increasing functions. It should be obvious from the foregoing arguments that this condition 
is necessary only to prove that there are no complete trajectories (other than the equilibrium position 
ql = qla, q2 = q2a) in the set 1~'= 0. One can eliminate this drawback, that is, permit functions Fi(yi) 
such that Fi(Yi) -- const I> [~ffl for lyil ~> 133 I> 1~1, by replacing (2.1) with an equation 

u = - F ( y ) -  F*(q2)+g d (2.12) 

where Fi(Yi) may be the same as in [6] (of course, satisfying conditions (1.6)-(1.9)) or, as in (1.11) with 
e = 0. F7 (Yi) are arbitrary continuous odd functions whose derivative vanishes at zero. 

Theorem 2.2 If conditions (1.4)-(1.9), (2.4) and (2.10) are satisfied, the closed system (1.1), (1.2), 
(2.12) has a unique equilibrium position, which coincides with the desired position: qa = qu, q2 = q2a; 
moreover, the equilibrium position is asymptotically stable in the large. 

Proof. The function P(ql, q2) for the new system is not just an analogue of the potential energy but 
a bona lute potential energy, that is, its derivatives with respect to the coordinates define the forces 
acting in the system. The proof of Theorem 2.2 differs from that of Theorem 2.1 only at the final stage. 
The rate of change of the function V(ql, q2, tll, q2) along a trajectory of the new system takes the form 

~, = _ q r  [{ F(y)  + F* (q2)} - F(y)]  = - q ~ F *  (q2) 

And now the statement that 12 = 0 only when q2 = 0 remains valid regardless of the fact that the 
coordinates F* may remain constant over finite intervals (of course, outside an arbitrarily small 
neighbourhood of zero). The rest of the proof is completed as before. 

3. ASYMPTOTIC STABILIZATION WHEN THE G E N E R A L I Z E D  
V E L O C I T I E S  ARE NOT ACCESSIBLE TO M E A S U R E M E N T  

We will consider the following control law 

u =F(q3 --q2)+gd (3.1) 

The components of the vector F may again be taken in the form (1.10), (1.11) or (1.12), that is, they 
increase continuously, so that conditions (1.6)-(1.9) are satisfied. 

The law (3.1) does not invoke the velocities, but on the other hand it depends essentially on the vector 
q3, which is evaluated in parallel with the motion and the measurement of q2 by numerical or mechanical 
solution of the equation 

q3 = - G - l ( F ( q 3  -q2)+x(q3 -q2d))  (3.2) 

where G and x are positive-definite diagonal matrices and q2a is as in (2.2). 
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The scheme and methods for investigating the law (3.1) basically repeat the investigation of the law 
(2.1) in the previous section. One first proves analogues of  Propositions 2.1 and 2.2, and then arrives 
at the main theorem, which is analogous to Theorem 2.1. 

Proposition 3.1. If the coefficients [~1, '~1 and a are chosen so that 

Yl>cx( 1 - a l l K - I + × - I I I ) - I > 0 ,  Yl~l>A+llgdll (3.3) 

then system (1.1), (1.2), (3.1), (3.2) has a unique equilibrium position and it coincides with the desired 
position: ql = qld, q2 = q2a as in (2.2), q3 = q2d. 

The proof is an~dogous to that of Proposition 2.1. After appropriate reduction one obtains, instead 
of (2.7) 

y = X, z = Z. F ( Z -  X) = Ag(x) (3.4) 

where we have introduced the notation z = q3 -q2a, Z = - ~ - l / ~ ( x ) .  Now, estimating the fight- and 
left-hand sides of  the third equation in (3.4) in norm, one reaches the conclusion x = 0, y = 0, z = 0. 

By analogy with (2.9), we introduce the function 

P(ql,q2,q3) = l q T  Kql2 --lqTdKql2d + U(ql)-Ud + 

q3-q2 _ 1 
+(q2d  --q2)T gd + ~ F r ( l ] )d~+2(q3  --q2d)Tx(q3 --q2d) 

0 
(3.5) 

Proposition 3.2. If inequality (3.3) holds, the function P(ql, q2, q3) has the following properties. 
1. P(ql, q2, q3) has a unique stationary point S: ql = qla, q2 = q2a, q3 = q2d. 
2. If 

~,nan(K)>&x, y2>&x,  Xmin(x)>&x 5=Xma x 2 (3.6) 

2 

with a as in (1.4) and ~ as in (1.7), then a finite neighbourhood of the point S exists in which P(ql, q2, q3) 
is convex, and therefore S is a local minimum point. 

3. P(ql, q2, q3) --> ** as II ql r, q2 r, q3r] r II - '  +**. 
4. P(ql, q2, q3) > P(qla, q2a, q3a) = 0 everywhere except at the point S. 

The proof is analogous to that of Proposition 2.2. The main difference is as follows. In proving property 2 one 
considers the neighbourhood [[z II ~< 1~/3, IIx + y  II <~ 213/3, Ilx-y II ~ 213/3. In this neighbourhood H q 3 -q2[I  ~ 13, 
and so, using (1.7), one can estimate the matrix of second derivatives of P(ql, q2, q3) (in the sense of quadratic 
forms) as follows: 

~2p(ql,q2,q3 ) ~K +~gl~ql -g 0 E] 
(a[q~,q~,q~ ]7)2 1 -oK K + Y2E ,Y2 

-y2 E x+72/~]1 

T T T T TT In the proof of property 3, the behaviour of P is considered on rays [x - y  , x + y ,  z ] = [a r, b r, cr]rt, t E [1, .o), 
II c II 1 /3, II a II II b II / 3, at least one of these inequafities being strict. 

Theorem 3.1. If conditions (1.4)-(1.9), (3.3), (3.6) are satisfied, the dosed  system (1.1), (1.2), (3.1), 
(3.2) has a unique equilibrium position, which coincides with the desired position: ql = qu,  q2 = 
q2d, q3 = q2d, where q2d is as defined in (2.2); moreover, this position is asymptotically stable in the 
large. 

Proof. We will consider the following auxiliary function 

V(ql, q2, q3, qlq2 ) -- I~ (t~l/ 'D(ql)ql  + q2Tjq2 ) q" P(ql, q2, q3 ) 
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and use expression (3.5). 
By Proposition 3.2, V(ql ,  q2, q3, 41, 42) is a Lyapunov function for the system. 
The rate of change of V(ql ,  q2, q3, 41, 42) along trajectories of the dosed system (1.1), (1.2), (3.1), 

(3.2) is 

k'(ql, q2, q3, ql, 42) = ~ 4r  D(qt )41 - 4~C(ql,41 )41 + 4rl t--g(ql ) + Kq2, ] + 

+4~'[-Kq21 + F(q3 - q2 ) + ga ] + (41 - q2 ) r  Kql2 + (q3 - q2a)r ×43 + 

+4~g(q, ) - 4rg,t + 4rF(q3. . - q2 ) - 4~F(q~. - q2 ) = -q3" T Gq 3. 

The arguments now take relations (1.1), (1.2), (1.3), (3.1) and (3.2) into consideration. It is obvious 
that, since G is positive-definite, we have 12~< 0, and if 12= 0, then q3 = 0, that is, q3 = q3~ = const. 
Then, by (3.2), F(q3 - q2) = --x(q3~ - q2z) = const. Since the components of the vector F(x)  are strictly 
monotone functions, this implies that q2 = q~ = const, and it then follows from (1.2) that ql = qlc and, 
by Proposition 3.1, ql = qxd, q2 = q2d, q3 = q2d and the set I2 = 0 does not contain other complete 
trajectories of the system. To complete the proof it remains to apply the Barbashin-Krasovskii theorem 
on asymptotic stability in the large. 

If the torques of the gravity forces are negligible, the stability conditions may be weakened. 

Corollary 3.1. If there are no gravity forces in the system, then Eqs (1.1), (1.2), (3.1), (3.2) are 
asymptotically stable in the large for any positive-definite diagonal matrices G and i¢ and any monotone 
increasing continuous functions F(x)  that vanish at zero. 

4. R E M A R K S  

1. The model (1.1), (1.2) of [1, 2] may be replaced by the more general model of [4] 

D(ql )ql + B(ql )q2 + CI (ql,ql,q2)ql + C2 (ql, ql )~/2 -t- K(q I - q2 ) + g(ql ) = 0 

Jil2 + BT (ql)ql + (?3 (ql 'q! )ql + K ( q2 - ql ) = u 

The same Theorems 2.1, 2.2 and 3.1 may be proved for this model too. The proof is slightly more complicated: 
the terms (ilrD(ql)ilx + q2Jt72)/2 in the auxiliary functions Vmust be replaced by a new kinetic energy 

t r r.II O(ql ) B(ql ) 
-2 ql q2 lllBr ( q, ) l ilCl: 

2. If we compare the control law of [4] 

u = -Kp(q2 - q 2 d ) -  Ko i12 +gd 

with the control laws (2.1), and especially (2.12), it can be seen that the laws proposed in this paper are extensions 
of the former, providing a closer approximation to the actual responses of an amplifier-motor system. 

3. A similar remark holds if one compares the control law of [5] with (3.1). But even more: the auxiliary equation 
(3.2) proposed here (which is an estimator of the generalized velocities) is of order half as much as in [5] and is 
most probably easier to implement. There have been earlier studies [8-10] of the asymptotic stabilization of non- 
linear mechanical systems without measurement of the generalized velocities. In these studies, the number of 
auxiliary differential equations that must be solved during the control process was equal to the number of controls. 
In a study of asymptotic stabilization of a Lagrangian system by bounded controls with velocity measurement [11], 
the number of control signals was equal to the number of degrees of freedom, but there were not external potential 
forces. 

4. The energy method is widely used to investigate the stability of non-linear mechanical systems with dissipation. 
We may mention studies of the asymptotic stabilization of a Lagrangian system which is quite general relative 
to velocities [12], and also relative to position coordinates and velocities [13]. Mention should also be made of 
[14, 15]. 

This research was carried out with support from the Russian Foundation for Basic Research (94-01- 
00813a).  
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